Ahmed Youssef

Cincinnati, OH • youssead@ucmail.uc.edu • +1 (513) 208-7444

https://www.linkedin.com/in/ahmed-youssef9 | Homepage: https://advoussef.github.io

SKILLS

Programming Languages/Systems: Python, C++, SQL, Apache Spark, Git, Docker, Linux Frameworks & Libraries: PyTorch, TensorFlow, HuggingFace, JAX, NumPy, pandas, Scikit-Learn Technologies & Tools: AWS, Distributed Training, Jupyter, Deep Learning, LLMs, Vision-Language Models **Soft Skills:** Organizational Leadership, Technical Writing, Education, Multilingual (English, German, Arabic)

PROFESSIONAL EXPERIENCE

HEP-THEORY GROUP AT UNIVERSITY OF CINCINNATI Researcher in Computational Physics| University of Cincinnati, Cincinnati, OH, US

- Led ML-based particle collision simulations using Generative Models (VAE, Normalizing Flows), adopted by 10k+ researchers globally
- Developed a Monte Carlo reweighting framework, improving simulation accuracy and increasing computational speed by 3-4x
- Designed a test statistic for CERN collider experiments, impacting 1,000+ datasets and billions of events
- Applied machine learning techniques to solve large-scale data analysis challenges, transferable to • industry data modeling and predictive analysis tasks

UC CENTER FOR ENTREPRENEURSHIP

Multiple Entrepreneurial Engagement

- Led market research, accelerating product development and securing \$7,500 in total funding through the Lab2Market fellowship and pitching at the New Venture Championship
- Refined startup concepts and go-to-market plans through the UC Venture Lab Pre-Accelerator Program
- Developed a computer vision-based quality control system, achieving 90% classification accuracy for manufacturing optimization

INDEPENDENT AI RESEARCHER

- Collaborated with EEML and Google DeepMind to design compact models for creative output, achieving high performance with reduced model size and faster inference.
- Published a GAN-based art generator using CLIP at NeurIPS ML for Creativity and Design workshop
- Developed AI explainability techniques for Vision-Language Models (see Project section)

PROJECTS

Few-Shot Abstractive Summarization for Style Transfer

- Developed a novel text style transfer method using large language models (LLMs) like OPT and GPT-3, focusing on unsupervised inference to generate fluent, context-aware text transformations
- Achieved 84% classification accuracy and state-of-the-art fluency scores in few-shot learning for • summarization and sentiment analysis; published at ICNLP 2023

Vision Language Models Unlocker

- Designed AI explainability techniques for Vision-Language Models (VLMs) such LLaVA by extending • LIME for videos, enhancing model transparency and interpretability
- Evaluated these techniques using the Google DeepMind Perception Test, assessing the AI's perceptual • understanding and reasoning abilities for improved model trustworthiness

EDUCATION

UNIVERSITY OF CINCINNATI Ph.D. Candidate in Particle Physics (Focus in Machine Learning)

RUHR UNIVERSITY OF BOCHUM Bachelor of Science in Physics

Cincinnati, OH **Expected Grad: May 2025**

> **Bochum**, Germany 2016-2019

Cincinnati. OH. US Jan 2023 -Present

Jul 2022 -Present

Cincinnati, OH, US Jan 2020 - Present

SELECTED PUBLICATIONS

NOTE: Authors in papers marked with (*) are listed alphabetically, as per field convention

- *"Data-Driven Reweighting for Monte Carlo Simulations", accepted at ML4PS workshop, NeurIPS 2024
- *"<u>Towards data driven models of hadronization</u>", ML4PS workshop, **NeurIPS 2023**
- "Hacking Generative Models with Differentiable Network Bending", ML4CD workshop, NeurIPS 2023
- "<u>Few-Shot Abstractive Summarization for Text Style Transfer</u>", ICNLP 2023
- "Normalizing Flows for Fragmentation and Hadronization", ML4PS workshop, NeurIPS 2022
- *"*Towards a data-driven model of hadronization using normalizing flows*", SciPost Phys. 17, 045 (2024)
- *"Earth Mover's Distance as a measure for CP-violation", JHEP, 10.1007/JHEP06(2023)098
- *"<u>Modeling Hadronization using Machine Learning</u>", SciPost Phys. 14, 027 (2023)
- *"<u>Reweighting Monte Carlo Predictions and Automated Fragmentation Variations in Pythia 8</u>", SciPost Phys. 16, 134 (2024)
- *"<u>Describing Hadronization via Histories and Observables for Monte-Carlo Event Reweighting</u>", arXiv preprint: 2410.06342 (2024)

SELECTED TALKS AND PRESENTATIONS

- "Data-Driven Reweighting for Monte Carlo Simulations", ML4PS, NeurIPS 2024
- "Hacking Generative Models with Differentiable Network bending", ML4CD, NeurIPS 2023,
- "Towards data-driven models of *Hadronization*", ML4PS, NeurIPS 2023
- *"Earth Mover's Distance as a measure for CP-violation"*, **12th international Conference on the CKM Unitarity Triangle**, Santiago de Compostela, Spain, Sept 2023
- "Few-Shot Abstractive Summarization for Text Style Transfer", ICNLP 2023
- "Normalizing Flows for Fragmentation and Hadronization", ML4PS, NeurIPS 2022,
- "ML for Physics: Simulating Particle Collisions", CS and Math seminar, IST Austria, Jul 2024
- "Earth Mover's Distance as a measure for CP-violation", HEP seminar, TU Dortmund, Germany, Aug 2023
- *"MLHAD: A Machine Learning based Simulation for Hadronization",* **Josef Stefan Institute (JSI)-FMF high-energy physics seminar,** JSI, Ljubljana, Slovenia Aug 2023
- *"MLHAD: A Machine Learning based Simulation for Hadronization"*, **Guest Lecturer in Particle Pheno**, **University Heidelberg**, Heidelberg, Germany Jul 2023

SELECTED RESEARCH COMMUNITY INVOLVEMENT

Co-organizer, Muslim in ML Affinity Workshop, NeurIPS 2024

• Spearheaded the organization of the workshop for 160 participants, coordinating speakers from OpenAI, Carnegie Mellon, MIT, and managing logistics, and maintained communication with the affinity chairs

Reviewer, ML and Physical Science Workshop, NeurIPS 2024

• Reviewed research submissions, offering in-depth feedback on methodologies and applications of ML in the physical sciences, shaping the quality and direction of the workshop's accepted papers

Convener, Computing, Analysis Tool, and Data Handling Session, Pheno 2024

• Led the session, overseeing abstract selection, managing panel discussions, and fostering cross-disciplinary dialogue on computational tools and data handling strategies

Co-organizer, PIKIMO 13 Conference (Nov 2022)

• Coordinated logistics and selected abstracts for a 15-speaker conference on high-energy physics

SELECTED HONORS AND AWARDS

- Awarded the **URC Fellowship** for research excellence in innovation and creativity; only 10% of students in each program are selected to apply
- Received the **GSG Research Fellowship** for outstanding research contributions in computational physics and machine learning
- Selected for the **Lab2Market Fellowship**, leading market research and securing \$2,500 in funding through the New Venture Championship
- Awarded the **Pheno Travel Award** for three consecutive years in recognition of research excellence and proposed presentations at the Pheno conference